

Enhancing Point Cloud Registration and TLSbased Landslide Deformation Analysis with RGB Images

PhD Candidate: Zhaoyi Wang

Supervisor: Prof. Dr. Andreas Wieser

08.10.2024, Graz

Point Cloud Registration

- Our community
 - ICP¹ (and variants), plane-based
 - typically need good initial alignment and high overlap
- Computer vision community
 - DL-based, learn feature descriptiors
 - achieve good registration
 - without initial alignment
 - without high overlap

However, the SOTA method is only using geometry – GeoTransformer²

2. Qin et al. (2022). Geometric transformer for fast and robust point cloud registration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11143-11152).

Geomonitoring

- M3C2¹ and its variants
 - only 1D
- Piece-wise ICP²
 - sparse 3D
- Hillshade³
 - a bit less sparse, but still sparse 3D
- F2S3⁴
 - dense 3D (current SOTA)

All methods rely only on geometry

^{2.} Friedli et al. (2016). Identification of stable surfaces within point clouds for areal deformation monitoring. In Proc. of 3rd Joint International Symposium on Deformation Monitoring (JISDM).

^{3.} Holst et al. (2021). Increasing spatio-temporal resolution for monitoring alpine solifluction using terrestrial laser scanners and 3d vector fields. Remote Sensing, 13(6), 1192.

^{4.} Gojcic et al. (2021). Dense 3D displacement vector fields for point cloud-based landslide monitoring. Landslides, 18, 3821-3832.

Contributions

• In general, my PhD topic is about fusing point cloud geometry with RGB image.

Roadmap

- Point cloud registration using both 2D RGB and 3D point cloud features
- TLS-based Landslide deformation analysis using both 2D and 3D matches

Problem

Geometric ambiguity

RGB images

GeoTransformer

Ground truth

Point clouds

RGB images

GeoTransformer

Ground truth

Solution

- Propose a two-stage cross-modal feature fusion, including:
 - assigning pixel-wise image features to input point clouds
 - incorporating patch-wise image features with subsampled point features

Overview of our Method

Datasets

- 3DMatch¹
- IndoorLRS²
- ScanNet++³

Point cloud

RGB

Depth

- 1. Zeng et al. (2017) 3DMatch: Learning local geometric descriptors from rgb-d reconstructions. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1802-1811).
- 2. Park et al. (2017) Colored point cloud registration revisited. In Proceedings of the IEEE international conference on computer vision (pp. 143-152).
- Yeshwanth et al. (2023) ScanNet++: A high-fidelity dataset of 3d indoor scenes. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 12-22).

Datasets

Create extremely geometry-poor datasets

Quantitative Results

	3DMatch_Planar			3DLoMatch_Planar			
Method	FMR $(\%)\uparrow$	IR (%) \uparrow	$\mathrm{RR}~(\%)\uparrow$	FMR (%) \uparrow	IR (%) \uparrow	RR (%) \uparrow	
FCGF [45]	84.5	39.1	45.5	61.6	14.6	27.4	
Predator [14]	83.4	39.8	55.5	68.2	19.1	47.9	
CoFiNet [15]	89.9	31.4	65.2	73.2	17.4	52.6	
GeoTransformer [22]	$\underline{96.5}$	57.1	<u>76.4</u>	<u>75.8</u>	32.7	59.5	
PCR-CG(retrain) [35]	80.7	38.0	64.1	64.5	17.4	48.1	
CoFF(ours)	99.0	60.8	90.5	87.2	36.5	70.4	

	Indo	orLRS_Plan	nar	ScanNet++Planar			
Method	FMR (%) \uparrow	IR (%) \uparrow	$\mathrm{RR}~(\%)\uparrow$	FMR (%)↑	IR (%) \uparrow	$\mathrm{RR}~(\%)\uparrow$	
FCGF $[45]$	98.6	52.8	60.8	35.9	9.9	15.1	
Predator [14]	96.0	48.9	76.9	37.8	9.6	27.2	
CoFiNet $[15]$	97.2	44.2	87.3	53.3	13.7	33.4	
GeoTransformer [22]	98.6	$\underline{64.5}$	91.2	49.9	14.6	37.6	
PCR-CG [35]	91.8	39.6	68.3	67.9	26.7	31.9	
CoFF(ours)	99.2	78.1	94.2	70.6	<u>20.0</u>	56.0	

Qualitative Results

Take-Home Message

- We propose a cross-modal feature fusion method that
 - specializes for pairwise point cloud registration
 - works well even the geometry is poor

Limitation

• Need accurate alignment between RGB images and point clouds¹.

 Wang, Z., Varga, M., Medic, T., & Wieser, A. (2023). Assessing the alignment between geometry and colors in TLS colored point clouds. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-1/W1-2023, 597–604.

Roadmap

- Point cloud registration using both 2D RGB and 3D point cloud features
- TLS-based Landslide deformation analysis using both 2D and 3D matches

Landslide Dataset

- Epochs: 02.2020 and 11.2020
- Point cloud data¹: long range (1.5+ km) scans with a Riegl VZ-6000
- RGB image: built-in cameras

Goal

• Estimate 3D displacement vector fields from two epoch point clouds

1. Kenner et al. (2022). The potential of point clouds for the analysis of rock kinematics in large slope instabilities: examples from the Swiss Alps: Brinzauls, Pizzo Cengalo and Spitze Stei. Landslides, 19(6), 1357-1377.

Overview of our Image-Guided Method

Results of F2S3 and our Image-Guided Method

ETH zürich

Overview of our DL-based Fusion Method

Results

Displacement [m]

5

4

Density of DVFs

- F2S3 (left): 112 k
- Our fusion method (right): 213 k

Results

Average deviation

• 0.081 m

Displacement [m] 1 0.5 0

ETH zürich

Estimated 3D DVFs

Only 0.3% of vectors are visualized for better readability

Take-Home Message

- We are focusing on proposing a DL-based fusion method for estimating 3D DVFs.
 - We hope the results can be more dense and more accurate.

Limitations

- Further comparison with GNSS observations is required for validation.
- Only a limited number of TLS datasets include RGB images, which restricts broader application.

Summary of my Work

List of current works

- 1. Assessing the alignment between geometry and colors in TLS colored point clouds (published)
- 2. Cross-modal feature fusion for robust point cloud registration with ambiguous geometry (under review)
- 3. An approach for RGB-guided dense 3D displacement estimation in TLS-based geomonitoring (in-process)
- 4. TLS-based Landslide deformation analysis using both 2D and 3D matches (in-process)

Future work

- 1. Further improve the performance of DL-based fusion method
- 2. Densify point clouds using RGB images

Thank you!

More information at https://gseg.igp.ethz.ch/people/people-group.html

Backup Slides

RE and TE

Quality of Correspondences

Further Discussion

• Effectiveness of different image features

\mathbf{F}^{3D} + \mathbf{f}^{3D}	$\mathbf{F}^{ ext{2D}}$	c 2D	3DMatch			3DLoMatch		
		1	$\mathrm{FMR}(\%)\uparrow$	$\operatorname{IR}(\%)\uparrow$	$\mathrm{RR}(\%)\uparrow$	$\mathrm{FMR}(\%)\uparrow$	$\operatorname{IR}(\%)\uparrow$	$\mathrm{RR}(\%)\uparrow$
\checkmark			97.9	71.9	92.0	88.3	43.5	74.0
\checkmark	\checkmark		98.8	76.2	94.2	90.1	48.2	<u>78.0</u>
\checkmark		\checkmark	98.3	68.7	91.5	92.7	40.5	77.8
\checkmark	\checkmark	\checkmark	99.5	<u>74.3</u>	95.9	93.6	47.4	81.6

Evaluation Metrics

• Inlier Ratio (IR): denotes the fraction of inlier correspondences among all estimated dense point correspondences. $IP = \frac{1}{2} \sum_{n=1}^{\infty} \left(\left\| \mathbf{P}^* \cdot \mathbf{p}^{d} + \mathbf{t}^* \cdot \mathbf{q}^{d} \right\|^2 < \Lambda \right)$

$$\mathrm{IR} = \frac{1}{|\mathbf{\Omega}^{\mathrm{f}}|} \sum_{(\mathbf{p}_{m_{j}}^{\mathrm{d}}, \mathbf{q}_{n_{j}}^{\mathrm{d}}) \in \mathbf{\Omega}^{\mathrm{f}}} \left(\left\| \mathbf{R}_{i}^{*} \cdot \mathbf{p}_{m_{j}}^{\mathrm{d}} + \mathbf{t}_{i}^{*} - \mathbf{q}_{n_{j}}^{\mathrm{d}} \right\|_{2}^{2} < \Delta_{r} \right)$$

- Feature Match Recall (FMR): denotes the fraction of point cloud pairs whose IR is above 5%.
- Rotation Error (RE): represents the rotation deviation between estimated and ground-truth rotation matrices: $(tresc((\mathbf{P}^{\dagger})^T - \mathbf{P}^* - 1))$

$$RE = \arccos\left(\frac{\operatorname{trace}((\mathbf{R}^{\dagger})^{T} \cdot \mathbf{R}^{*} - 1)}{2}\right)$$

 Translation Error (TE): represents the Euclidean distance between estimated and ground-truth translation vectors:

$$\mathrm{TE} = \|\mathbf{t}^{\dagger} - \mathbf{t}^{*}\|_{2}$$

 Registration Recall (RR): for three indoor datasets is defined as the fraction of point cloud pairs whose RMSE is below an acceptance radius 0.2 m.

$$\text{RMSE} = \sqrt{\frac{1}{|\overline{\mathbf{\Omega}}|} \sum_{(\mathbf{p}_{m_j}^{\text{d}}, \mathbf{q}_{n_j}^{\text{d}}) \in \overline{\mathbf{\Omega}}} \left(\left\| \mathbf{R}_i^{\dagger} \cdot \mathbf{p}_{m_j}^{\text{d}} + \mathbf{t}_i^{\dagger} - \mathbf{q}_{n_j}^{\text{d}} \right\|_2^2 \right)}$$

ETH zürich

Failure Cases

Figure D.11: Failure cases on 3DLoMatch and IndoorLRS datasets, where both geometry and color information are ambiguous.

ETH zürich

Ground-truth DVFs

- RMSE: 0.05 m
- visually check:
- blue: source; yellow: target

Clustering using a segmentation algorithm

Used features include:

- Geometric: linearity, planarity, scattering
- Radiometric: intensity, or grayscaled RGB

ETH zürich

clustering results

Coarse-to-Fine Matching

- Goal of coarse matching: establish cluster matches between two epochs
- Steps:
- use shape-invariant information
- self-attention + MLP, and random noise to make the feature are transformation-invariant
- additionally, count the point matches from 2D source
- find the most matched cluster

ECDF of Point Errors

